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Abstract

The current measurement method for occupational exposure to wood dust is by gravimetric 

analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform 

spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated 

by analysis of the same samples between two laboratories. Field samples were collected from six 

wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. 

Gravimetric mass was determined in one laboratory by weighing the filters before and after 

aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on 

the filter which is placed on a motorized stage inside the spectrometer. The metric used for the 

DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 

cm−1. Calibration curves were constructed separately in both laboratories using the same sets of 

prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western 

red cedar in the range of 0.125–4 mg of wood dust. Using the same procedure in both laboratories 

to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 

25% of the average result with a mean difference between the laboratories of 18.5%. Some 

observations are included as to how the calibration and analysis can be improved. In particular, 

determining the wood type on each sample to allow matching to the most appropriate calibration 

increases the apparent proportion of wood dust in the sample and this likely provides more 

realistic DRIFTS results.
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INTRODUCTION

The worldwide practice to assess exposures to wood dust is to collect the aerosol in a 

workers breathing zone with a sampling device and to determine the mass collected on a 

filter in a known volume of air assuming all the collected dust is wood (NIOSH, 1994; 

OSHA, 2003). A gravimetric procedure makes sense in terms of simplicity where 

recommended or regulated standards for acceptable exposure are relatively high. However, 

as exposure limits are lowered and become more difficult to meet, there is more interest in 

assessing the actual wood content of the collected dust. Occupational exposure to airborne 

wood is implicated in the development of several symptoms and diseases, including nasal 

carcinoma. In 1995, wood dust was classified as carcinogenic to humans (Group 1) by the 

International Agency for Research on Cancer (IARC). However, under US regulations 29 

CFR 1910.1000 Table Z-3, wood dust is still considered as a Particle Not Otherwise 

Regulated (PNOR), sometimes also referred to as a `nuisance' dust, with a Permissible 

Exposure Limit of 15 mg m−3. The American Conference of Governmental Industrial 

Hygienists (ACGIH®) has recommended different limits over the years that might be 

applied to provide a threshold of safety against the onset of non-cancer endpoints, such as 

decrements in pulmonary function, with separate designations for potentially cancer-causing 

or allergenic species. Their current Threshold Limit Value (TLV®) for most wood species is 

1 mg m−3, set in 2005. A comprehensive study (Kauppinen et al., 2006) of woodworking 

facilities in member and accession countries of the European Union suggests that two-thirds 

of woodworkers are currently exposed above 1 mg m–3 and the situation is unlikely to be 

different in the USA or elsewhere. Environmental non-wood dust could contribute 

considerably towards a sample exceeding 1 mg m−3, so that a method of distinguishing the 

wood content is important. While dust contribution from other sources might be limited in 

the woodworking industries, it may be especially important in construction. In consideration 

of possible changes in the classification of wood dust from a nuisance dust to one that may 

become specifically regulated, infrared spectroscopy has been employed in three previous 

studies in which direct on-filter measurement and analysis were used for determination of 

occupational wood dust (Rando et al., 2005; Chirila et al., 2011; Kwon et al., 2013). Fourier 

Transform Infrared (FT-IR) spectroscopy in the near-IR or mid-IR ranges has been long 

promoted as a non-destructive and rapid means of analysis of the molecular structure of 

cellulose, hemicellulose, and lignin in wood dust, paper, or solid wood (Obst, 1982; 

Grandmaison et al., 1987; Mitchell, 1988; Zavarin et al., 1990; Orton et al., 2004). The 

research groups at Tulane University and National Institute for Occupational Safety and 

Health (NIOSH) have worked to harmonize an analytical method to estimate the mass of 

wood particles collected on a filter from the infrared spectrum of wood dust. More precisely, 

diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) or diffuse reflection 

(DR) was used in conjunction with a motorized stage to accommodate a filter for direct 

analysis of the wood dust. DRIFTS analysis for wood has become widely used since the late 

1980s with the introduction of off-axis units (Mitchell, 1988), such as the one used here for 
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which specular reflectance is minimized (Fig. 1) (Chirila et al., 2011). In DRIFTS analysis, 

a beam of infrared light is focused on the surface of a sample and the diffuse reflected light 

is collected by a system of mirrors and analyzed by an infrared detector. The result is a plot 

of infrared light intensity versus wavenumber, which is a function of the combined effects of 

absorption and reflection of the sample surface.

The infrared spectrum of wood is composed of a strong absorption ~3400 cm−1 from O–H 

stretching vibration, a prominent C–H stretching absorption at ~2900 cm−1, and strong 

features in the `fingerprint' region consisting of overlapping bands due to vibrations in the 

cellulose and lignin polymers below 1800 cm−1, as described by Owen and Thomas (1989). 

In prior studies (Rando et al., 2005; Chirila et al., 2011) other absorption bands 

corresponding to cellulose and lignin, respectively, were used, but in this study, the choice 

of the carbonyl band (~1735 cm−1) for quantitative analysis is based on the fact that this 

band is far enough from the cutoff frequency of the glass fiber filter (~1500 cm−1), and it 

can provide specific spectral information that can potentially be used to distinguish between 

softwood and hardwood (Kwon et al., 2013). In a study by Barker and Owen (1999), it was 

shown that the carbonyl band for 12 types of softwood gave a mean value of 1737.5 cm−1 

with a standard deviation of 2.7 cm−1, while 32 types of hardwoods have a mean value of 

1745.2 cm−1 with a standard deviation of 3.9 cm−1. This value tends to depend on the type 

of carbonyl group giving rise to the absorption. Moreover, due to higher cellulose and 

hemicellulose content in hardwood compared to softwood, the carbonyl band has a stronger 

intensity in hardwood compared to softwood (Owen and Thomas, 1989; Moore and Owen, 

2001). Carbonyl groups occur abundantly within the polymer components of wood, but they 

tend to predominate in the branched-chain hemicellulose polymer. Infrared spectra of 

isolated lignin and holocellulose (cellulose + hemicellulose) confirm this conclusion in that 

the carbonyl absorption is much stronger and more prominent in the latter (Owen and 

Thomas, 1989).

The field samples were obtained with Button aerosol sampler (SKC Inc., Eighty Four, PA). 

The choice of this personal inhalable sampler is based on several factors, including side-by-

side studies of inhalable samplers (Harper and Muller, 2002; Harper et al., 2004; Görner et 

al., 2010; Kauffer et al., 2010; Lee et al., 2011) that show the Button sampler collects 

similar (although slightly lower) mass of wood dust when compared with other samplers. 

The Button aerosol sampler operates at 4 l min−1 to meet the inhalable convention of the 

International Organization for Standardization (ISO 7708, 1995) and consists of a spherical 

shell inlet with numerous regularly spaced holes, 381 μm in diameter, covering a porosity of 

21% of the total surface (Kalatoor et al., 1995). The uniform distribution of the holes on the 

curved inlet results in an even distribution of particles on the filter surface and the sampler's 

inlet screen should minimize the collection of particles larger than 100 μm (i.e. those not 

covered by the ISO inhalable convention), thus preventing the overestimation of inhalable 

wood dust. The features that make the Button sampler attractive in this analysis are the 

higher sampling flow rate resulting in larger collected dust mass for a given sampling 

duration, the even deposition of dust particles across the filter, minimal wall loss (Li et al., 

2000), and the reduced number of large projectile particles (which are probably not inhaled 

by workers) compared to other inhalable samplers (Harper and Muller, 2002). Other 
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samplers may not be suitable because they collect exceedingly large particles, require re-

deposition of the sample for analysis, or may use an unsuitable filter.

In this study, we analyzed the reproducibility of the DRIFTS method implemented by the 

research group at Tulane University by using a similar experimental setup and analysis of 

the same standard and field samples at the Tulane and NIOSH laboratory. Further 

adjustments to the calibration parameters along with a detailed sample-by-sample analysis 

can likely provide an improved method with more realistic results.

METHODS

The standard samples for calibration were prepared at Tulane University (New Orleans, LA) 

from wood dust of red oak, southern yellow pine, and western red cedar generated from 

lumber pieces and airborne dust collected using a Respicon sampler, as described previously 

(Kwon et al., 2013). The wood dust from the different stages of the Respicon was combined 

and a weighed amount was homogenized in ethyl acetate suspension and aliquots of 

different volumes were deposited on 25 mm glass fiber filters using a filtration apparatus 

with 21 mm inner diameter to form the calibration filters. There were 13 filters with each 

type of wood for calibration measurements with mass ranging from 0.125 to 4 mg. All field 

samples and calibration standards were stored in static-dissipative Filter Keepers (Omega 

Specialty Instruments Division of SKC, Inc.). The field samples after weighing were hand 

carried by air to Tulane for analysis there, and the field samples and calibration filters were 

subsequently hand carried by air to the NIOSH laboratory in Morgantown, WV. Great care 

was taken in the transportation and handling of filters to prevent sample loss. The results of 

the Tulane analyses have been published separately (Kwon et al., 2013).

The field samples were obtained from six wood product industry factories (sites A–F) where 

various types of wood, such as: red oak, pine, western red cedar, maple, cherry, etc. were 

used to produce plywood, hardwood flooring, engineered hardwood flooring (which is 

different from standard hardwood flooring), door skins, shutters, and kitchen cabinetry (Lee 

et al., 2012). A total of 181 field samples and 31 blanks were provided for DRIFTS analysis. 

As noted, the field samples were collected using Button samplers. Pre-weighed type AE 

glass fiber filters (SKC Inc.) of 25 mm diameter were loaded inside each sampler and 

inhalable dust was collected at a nominal flow rate of 4 l min−1. after collection, the filters 

were re-weighed then washed with ethyl acetate in the same way as the calibration filters to 

remove soluble organic interferences (Rando et al., 2005). The area of wood dust deposition 

is ~21 mm diameter.

The present method of analysis builds on the studies described previously (Rando et al., 

2005; Chirila et al., 2011; Kwon et al., 2013). Briefly, each filter is set onto the motorized 

stage in the spectrometer and is translated and rotated during the collection of two averaged 

spectra from orthogonal diameters of the filter. With this procedure we are attempting to 

take into consideration possible uneven deposition of the dust and to map a large area of the 

filter given that the focused infrared beam is between 6 and 9 mm in diameter. The analysis 

consists of measuring the intensity of the diffuse reflection band at ~1735 cm−1, which is 

Chirila et al. Page 4

Ann Occup Hyg. Author manuscript; available in PMC 2015 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



then used to estimate wood dust mass, based on calibration curves constructed from standard 

laboratory samples. The experimental parameters are summarized in Table 1.

In summary, we used a Research Series FT-IR spectrometer (Mattson, Madison WI) 

equipped with a diffuse reflection unit (Specac Inc., Kent, UK) fitted with a motorized filter 

stage shown in Fig. 1 (Chirila et al., 2011). Since the purpose of this work was to check the 

reproducibility of the method, differences between the two methods were minimized where 

possible, given that there are unavoidable differences between the hardware and software of 

different instruments. In particular, the same approach to calibration used by the Tulane 

group was maintained in the NIOSH laboratory. The differences in DRIFTS analysis of the 

field samples by the two laboratories were evaluated by using equivalence test, as this 

method is designed to measure equivalence rather than difference and allows some arbitrary 

margin of error between two labs. Since the data from Tulane and NIOSH are not 

independent we used Schuirmann's test from SAS (9.3), a well-established statistical method 

which involves conducting a two one-sided test (TOST) for the mean difference 

(Schuirmann, 1987). This test maximizes the statistical comparison between labs. Kwon et 

al. (2013) reported results for 181 samples that excluded blanks and samples outside of their 

calibration range. Some of these samples (22) were recorded as below the limit of detection 

(LOD) in either laboratory (5 samples by Tulane only, 10 by NIOSH only, and 7 by both 

laboratories) and so were removed to avoid errors due to different limits of detection 

(Ogden, 2010). Nine samples were removed as having gravimetric mass greater than 4 mg. 

Twelve samples (8 from site E) where the difference between the two laboratories was 

greater than three times the standard deviation of the average difference were considered 

analytical outliers and removed. The remaining 138 pairs of sample results met the criteria 

for inclusion in the comparison between the two laboratories.

We also examined alternative calibration parameters as described below, and determined the 

effect of those on the differences. In addition, we show a methodology for determining the 

predominant form of dust (hardwood versus softwood), so that the most appropriate 

calibration for a specific sample can be selected. In this further analysis, 155 sample results 

from the NIOSH laboratory above the LOD and within calibration range were used.

RESULTS AND DISCUSSION

The following refers to the analysis of the samples in the NIOSH laboratory. The analysis of 

the samples in the Tulane laboratory has been published previously (Kwon et al., 2013). The 

standard samples were prepared using red oak, southern yellow pine, and western red cedar. 

For spectroscopic comparison only, two more wood dusts were analyzed: cherry and maple, 

and the spectra from each type of woods are represented in Fig. 2 (a) for the hardwoods: 

maple, cherry, and red oak; and in (b) for the softwoods: western red cedar and southern 

yellow pine. Two main bands, B1—at ~1735 cm−1 and B2—at ~1595 cm−1 are of interest 

for this discussion. The carbonyl band at 1735 cm−1 is attributed to C = O stretching 

vibration in the cellulose and hemicellulose polymers with the peak position known to vary 

from 1733 to 1745 cm−1 for softwood and hardwood, respectively (Owen et al., 1989; 

Barker and Owen, 1999). The band at 1595 cm−1 is due to lignin molecules and is also 

known to vary in peak position and intensity for different types of wood. The peak position 
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and relative intensity of these two bands can be used to differentiate between various types 

of wood dusts. From the upper part of Fig. 2, we can see that for the hardwoods (red oak and 

maple) B1 is higher than B2, whereas for the softwoods (western red cedar and southern 

yellow pine) in the lower part of Fig. 2 the intensity of the two bands is comparable with B1 

being lesser. The exception is the cherry for which the intensity B1/B2 is similar to the 

softwoods, but for which the peak positions are the ones expected for hardwood. This simple 

type of spectral analysis can serve as a key tool for labeling the field samples according to 

the most predominant type of wood (hard or soft) present on the filter and thus allowing 

application of a more appropriate calibration matched to the sample. However, it cannot 

accurately determine the proportions of hard and soft wood on a filter containing mixed 

wood dusts.

The carbonyl band at 1735 cm−1 gives the best sensitivity as shown in Fig. 2. Figure 3 

shows the calibration curves we obtained measuring the standard filters. Each data point 

represents the DR mass obtained from the average of the peak intensity of the carbonyl band 

in two diffuse reflection spectra collected from each sample. The diffuse reflection values 

are shown in units of Kubelka–Munk or log 1/R (reflectance). These functions are two 

alternative representations of the diffuse reflection measurement, just as absorption and 

transmission represent equivalently the transparency property of a material, and just as the 

peak intensity of an absorption band is proportional with concentration of the specific 

molecular group giving rise to that band, the diffuse reflection intensity is proportional to the 

concentration of the molecular groups. Ideally, this relationship between peak intensity and 

concentration is linear (Beer's law); however it is not unusual to observe non-linear 

behaviors due to experimental conditions, particle size, sample type, or preparation (Fuller 

and Griffiths, 1980; Brimmer and Griffiths, 1986; Olinger and Griffiths, 1988; Sirita et al., 

2007). Even though our samples are not infinitely thick, which is an assumption for 

application of the Kubelka–Munk law, the analysis can still be performed using the mass per 

area or the filter coverage in place of the concentration as described previously (Sirita et al., 

2007; Chirila et al., 2013). As more wood dust is added to the filter, it is the filter coverage 

that influences the DRIFTS intensity. Since all samples have the same area, coverage is 

proportional to mass if the thickness of deposit does not vary. The layer thickness does not 

build as rapidly as the filter coverage (Chirila et al., 2013, Figure 7) until a critical mass is 

reached and from whereon saturation of the infrared bands intensity can be observed. This is 

a reason to consider dilution of samples with more than 4 mg of dust (in this study nine 

samples contained more than 4 mg of dust but were excluded from the comparisons).

There are four sets of data in Fig. 3, one for western red cedar in units of log 1/R, one for 

southern yellow pine in units of log 1/R and two sets for red oak, one in log 1/R and the 

other in Kubelka–Munk (K–M) units. The method applied in the Tulane study consists in 

using log 1/R units for the softwoods and Kubelka–Munk for red oak and for reproducibility 

reasons we have applied the same method. We recognize the calibration in K–M units is not 

linear but we have used a linear fit for compatibility with the Tulane calibration. We also 

added a representation of the red oak data in log 1/R units which gave a better result as can 

be seen in Fig. 3 and Table 2 where we have listed the fitting parameters side-by-side 

between the Tulane and NIOSH calibrations.
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Yellow pine calibration was used to estimate DR mass from site A, red oak calibration was 

used to estimate DR mass from sites B, E, and F, western red cedar was used for site D, and 

for site C, it was reported that the factory used a mixture of 85% hardwoods and 15% 

softwoods. A calibration function was computed based on this information and the 

calibration function for a mixture of red oak and yellow pine was found to be y = −0.033x2 + 

0.338x, whereas the Tulane study used y = −0.042x2 + 0.344x for the same site.

For the determination of the analytical LOD and limit of quantitation (LOQ), a blank filter 

was measured twelve times and the standard deviation (SD) at 1735 cm−1 was computed. 

The LOD was calculated as LOD = 3 × SD and LOQ was calculated as LOQ = 10 × SD. 

The values obtained for LOD were ~34 μg for red oak, 36 μg for the mixed wood, and 70 μg 

for yellow pine and western cedar. The values for LOQ were estimated as 110 μg for red 

oak, 120 μg for mixed wood, 230 μg for southern yellow pine, and 230 μg for western red 

cedar as determined from using log 1/R function for the diffuse reflection, with a coefficient 

of variation (CV) of 3.9% for red oak, 3.4% for yellow pine, and a rather high 11.2% for 

western red cedar (in units of Kubelka–Munk). These values are different from those 

previously reported (Kwon et al., 2013) because of differences in equipment and calibration 

curves. We chose to report the CV from spectra in units of Kubelka–Munk since in the limit 

of small concentration, the signal-to-noise ratio (SNR) for this function becomes 

proportional to the square root of concentration (Fuller and Griffiths, 1980), whereas the 

SNR for log 1/R becomes linearly proportional to the concentration.

Field samples were measured under the same experimental conditions as the standard filters: 

two DRIFTS spectra for each sample collected across two orthogonal diameters of the filter 

were averaged and the peak intensity of the carbonyl band recorded. Then calibration 

functions were applied for each site set based on the information received from each 

sampling site and a DR mass was computed. The results are presented in Table 3 as NIOSH 

DR mass from each sampling site along with the corresponding DR mass from Tulane lab. 

A comparison of the individual sample results is shown graphically in Fig. 4.

The difference between DR mass and gravimetric mass is in part the result of non-wood 

material contribution to the gravimetric mass. The difference between DR masses 

determined in different laboratories is dependent on the sampling site. One way to examine 

this variation is to introduce a new variable that will measure relative difference (RD) as the 

normalized mass difference between Tulane (T) and NIOSH (N): RD = (T − N)*100/mean 

of T&N. The mean value of the RD is 18.5 (NIOSH laboratory underestimating) with 90% 

confidence interval (13.91, 23.17). If we regard RD = 25 as an arbitrary selection to be 

considered as acceptable we get significant P = 0.0112, so that overall the two laboratories 

would be considered as equivalent (Table 4).

The underestimation of NIOSH measurements compared to those from Tulane may be due 

to sample losses between the analyses, though we went to great lengths in storage and 

transportation to minimize this risk. Although `true' values are not available for these 

samples, it is possible that they may lie between the results from the two laboratories and 

with these initial results, we anticipate the method may be sufficiently robust to be used by 

other laboratories to obtain results within an acceptable range. This can be confirmed by 
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recruiting other laboratories to participate in the analysis, which is possible in the future 

because the analysis is not destructive.

The results presented above are based on the predominant wood type reported by the 

industrial hygienist for each site, but we noticed that some of the samples from sites reported 

as hardwood would present a softwood spectral characteristic or vice versa. When this 

observation was taken into consideration and sample-by-sample analysis using the 

calibration that most closely matched the spectral characteristics was performed, we 

obtained an increase in the computed mass and we refer to this new mass as `DR mass by 

NIOSH Recalculated'. Mean results by site are presented in Table 5 and individual samples 

are plotted in Fig. 5. A total of 103 samples out of the 155 field samples above NIOSH LOD 

and within calibration range gave a recalculated NIOSH mass higher than 25% of the 

NIOSH DR mass, which represents ~66% of the samples. This change is entirely due to a 

better match of the field samples with standard samples in terms of spectral characteristics. 

In these factories, the greatest contributor to the airborne dust mass is wood. There may be 

other contributions from vehicle exhaust, ambient soil, sprays, etc., that are not otherwise 

extracted from the samples by ethyl acetate (Rando et al., 2005). However, it is not expected 

that these contributions would be more than the wood contribution, which would appear to 

be the case in some situations when the DR mass is compared to the gravimetric mass. Thus 

the recalculated DR mass is intuitively a more likely representation of the true mass of wood 

in the sample, and this procedure likely provides a more realistic assessment of exposure. 

However, there would be a slightly greater expense in the additional analytical work of 

examining each spectrum individually to select the calibration parameters.

It is not possible at this point to determine accurately the contribution of this analytical 

procedure to the uncertainty of overall wood dust measurements, since standard protocols 

for this determination require a minimum of six participating laboratories (ASTM 

International, 2011). However, an average RD of 18% compares favorably with an average 

gravimetric difference of 34% between paired field samples (Lee et al., 2011).

CONCLUSIONS

DRIFTS has been used in one laboratory to estimate the mass of wood dust on a set of air 

sample filters collected in different woodworking factories and then the method was 

reproduced as closely as possible to reanalyze the same samples in this study. The results 

from the two laboratories were compared in terms of experimental setup, calibration 

parameters, and resulting average DR wood dust mass. Calibration curves were constructed 

in both laboratories using the same sets of prepared filters from the inhalable sampling 

fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125–4 mg 

of wood dust deposited on 25 mm glass fiber filters. The field samples were then analyzed 

using exactly the same procedure to build the calibration curve. This method resulted in 

62.3% of the samples measuring within 25% of the average result with a mean difference 

between the laboratories of 18.5%. Some observations have been included as to how the 

calibration and analysis can be improved. In particular, determining the wood type on each 

sample to allow matching to the most appropriate calibration increases the apparent 

proportion of wood dust in the sample and this likely provides more realistic results. This 

Chirila et al. Page 8

Ann Occup Hyg. Author manuscript; available in PMC 2015 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method is one of several directions (Materazzi et al., 2013) being investigated with the aim 

to elucidate the specific concentration of wood dust in air with more specificity than 

gravimetric analysis of all dust. Such a method would allow for more precise 

epidemiological studies and control of exposures. It is limited in that it is more useful for 

common situations where the wood is of one type, hard or soft, although calibration based 

on settled dust from the area of concern could be employed for most accurate 

characterization in mixed wood situations.
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Figure 1. 
Picture of the motorized stage in the diffuse reflection unit inside the FT-IR spectrometer 

and a schematic of the diffuse reflection process (from Chirila et al., 2011).
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Figure 2. 
Diffuse reflection infrared spectra from hardwood and softwood standards. The ratio B1/B2 

can be used to differentiate between hard and softwood dust. For most hardwoods B1/B2 > 1 

and for softwoods B1/B2 ≤ 1.
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Figure 3. 
Calibration curves for the standard inhalable wood dusts. DRIFTS intensity data shown as 

log 1/R and Kubelka–Munk units for red oak, and as log 1/R for yellow pine and western red 

cedar. The values were recorded at the carbonyl peak. The curves represent the best fit of the 

data, except for the linear fit of red oak as Kubelka–Munk which was computed for the 

method equivalency investigation.

Chirila et al. Page 13

Ann Occup Hyg. Author manuscript; available in PMC 2015 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Mass distribution of all the field samples by site. NIOSH mass from this work, Tulane mass 

from Kwon et al. (2013).
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Figure 5. 
Field samples gravimetric mass (x) plotted against wood dust mass from diffuse reflection 

(y) as per original calculation (DR mass NIOSH) and recalculated mass (DR mass NIOSH 

recalculated) considering the reassignment of a sample where appropriate from softwood to 

hardwood and vice versa, and from use of quadratic calibration in place of linear for 

hardwood samples.
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Table 1

Experimental parameters for the two laboratories

Equipment Parameter NIOSH laboratory Tulane group

Spectrometer FT-IR Mattson Research Nicolet 380

Detector MCT MCT

# Accumulations 256 256

Spectral units Kubelka–Munk and log 1/R Kubelka–Munk and log 1/R

DRIFTS accessory Specac, Inc. Specac, Inc.

Motorized filter stage Manufacturer In-house at NIOSH In-house at Tulane

Travel distance 17 mm 17 mm

Time 102 s 129 s

# Diameters Two orthogonal Two orthogonal
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Table 2

Calibration parameters from forced-zero, linear fitting (y = ax) for red oak in Kubelka–Munk units and 

quadratic fitting (y = ax + bx2) for red oak, southern yellow pine and western red cedar in log (1/R) units. R2 is 

the coefficient of determination for the regression analysis (not the square of reflectance)

Standards NIOSH Tulane University

a b R 2 a b R 2

Red oak 0.352 — 0.960 (K–M) 0.406 — 0.983 (K–M)

0.368 −0.045 0.999 (log 1/R) — — —

Southern yellow pine 0.171 −0.019 0.997 (log 1/R) 0.162 −0.021 0.998 (log 1/R)

Western red cedar 0.166 −0.018 0.997 (log 1/R) 0.165 −0.022 0.998 (log 1/R)
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Table 3

Average diffuse reflection (DR) mass from Tulane and NIOSH for each sampling site compared to NIOSH 

gravimetric mass. Samples below the limit of detection or beyond calibration range in either laboratory were 

not included, nor were samples considered outliers in the comparison (138 samples met criteria)

Sampling site DR mass by Tulane (mg) DR mass by NIOSH (mg) Gravimetric mass (mg)

Site A 0.244 0.199 0.358

Site B 0.488 0.314 1.108

Site C 0.175 0.170 0.406

Site D 1.073 0.900 1.078

Site E 0.761 0.780 1.634

Site F 0.533 0.461 1.624
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Table 4

Equivalence test output for all field samples and by site

Sampling site Number of samples Mean difference % Equivalent within 25% P value Equivalent within 30% P value

All 138 18.5 0.0112 <0.0001

Site A 21 21.1 0.2156 0.0414

Site B 21 44.7 0.9788 0.9393

Site C 22 −1.3 0.0009 0.0002

Site D 25 26.2 0.6295 0.1521

Site E 23 6.0 0.0030 0.0005

Site F 26 15.9 0.0834 0.0184
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Table 5

Results from applying the sample-by-sample analysis (155 NIOSH samples)

Sampling site Number of samples DR mass by NIOSH DR mass by NIOSH recalculated Gravimetric mass (mg)

Site A 21 0.199 0.199 0.358

Site B 23 0.293 0.777 1.019

Site C 26 0.171 0.342 0.389

Site D 27 0.992 0.894 1.125

Site E 32 0.608 1.118 1.332

Site F 26 0.461 1.663 1.624
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